Exercise 39

In Exercise 9.1.15 we formulated a model for learning in the form of the differential equation

$$
\frac{d P}{d t}=k(M-P)
$$

where $P(t)$ measures the performance of someone learning a skill after time t, M is the maximum level of performance, and k is a positive constant. Solve this differential equation to find an expression for $P(t)$. What is the limit of this expression?

Solution

This differential equation is separable, so we can solve for $P(t)$ by bringing all terms with P to the left and all constants and terms with t to the right and then integrating both sides.

$$
\begin{aligned}
d P & =k(M-P) d t \\
\frac{d P}{M-P} & =k d t \\
\int \frac{d P}{M-P} & =\int k d t
\end{aligned}
$$

Use a u-substitution to solve the integral on the left.

$$
\begin{aligned}
& \text { Let } \left.\begin{array}{rl}
u=M-P & \\
\qquad \begin{array}{rl}
d u=-d P & \rightarrow \quad-d u=d P \\
\int \frac{-d u}{u} & =\int k d t \\
\ln |u| & =-k t+C \\
e^{\ln |M-P|} & =e^{-k t+C} \\
|M-P| & =e^{-k t} e^{C} \\
M-P & = \pm e^{C} e^{-k t}
\end{array}
\end{array} . \begin{array}{rl}
\mid M-P
\end{array}\right) \\
&
\end{aligned}
$$

Let $C_{1}= \pm e^{C}$. Then

$$
P(t)=M-C_{1} e^{-k t} .
$$

To find the limit of this expression we take the limit of $P(t)$ as t goes to infinity.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} P(t) & =\lim _{t \rightarrow \infty}\left(M-C_{1} e^{-k t}\right) \\
& =\lim _{t \rightarrow \infty} M-\lim _{t \rightarrow \infty} C_{1} e^{-k t} \\
& =M-C_{1} \underbrace{\lim _{t \rightarrow \infty} e^{-k t}}_{=0} \\
& =M-0
\end{aligned}
$$

Thus,

$$
\lim _{t \rightarrow \infty} P(t)=M
$$

This makes sense. After a really long time a person will reach his or her maximum level of performance.

