Exercise 39

In Exercise 9.1.15 we formulated a model for learning in the form of the differential equation

$$\frac{dP}{dt} = k(M - P)$$

where P(t) measures the performance of someone learning a skill after time t, M is the maximum level of performance, and k is a positive constant. Solve this differential equation to find an expression for P(t). What is the limit of this expression?

Solution

This differential equation is separable, so we can solve for P(t) by bringing all terms with P to the left and all constants and terms with t to the right and then integrating both sides.

$$dP = k(M - P) dt$$
$$\frac{dP}{M - P} = k dt$$
$$\int \frac{dP}{M - P} = \int k dt$$

Use a u-substitution to solve the integral on the left.

Let
$$u = M - P$$

 $du = -dP \rightarrow -du = dP$
 $\int \frac{-du}{u} = \int k \, dt$
 $\ln |u| = -kt + C$
 $e^{\ln |M-P|} = e^{-kt+C}$
 $|M-P| = e^{-kt}e^{C}$
 $M - P = \pm e^{C}e^{-kt}$

Let $C_1 = \pm e^C$. Then

$$P(t) = M - C_1 e^{-kt}$$

To find the limit of this expression we take the limit of P(t) as t goes to infinity.

Ì

$$\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \left(M - C_1 e^{-kt} \right)$$
$$= \lim_{t \to \infty} M - \lim_{t \to \infty} C_1 e^{-kt}$$
$$= M - C_1 \lim_{t \to \infty} e^{-kt}$$
$$= 0$$
$$= M - 0$$

Thus,

$$\lim_{t \to \infty} P(t) = M.$$

This makes sense. After a really long time a person will reach his or her maximum level of performance.

www.stemjock.com